В цилиндре под двумя одинаковыми тонкими поршнями находится сжатый идеальный газ. Расстояния от дна цилиндра до нижнего поршня и от нижнего поршня до верхнего одинаковы и равны h (рис.). Давление воздуха под верхним поршнем вдвое больше атмосферного. Вся система находится в равновесии. На верхний поршень надавливают так, что он опускается на место нижнего, сжимая газ. Каким станет расстояние х от нижнего поршня до дна сосуда? Атмосферное давление постоянно.

Обозначим h расстояние от дна цилиндра до нижнего поршня и от нижнего поршня до верхнего, х — расстояние х от нижнего поршня до дна сосуда после сжатия, ратм — атмосферное давление, р1 — давление газа под верхним поршнем, рп — давление поршня, V1 — объем воздуха под верхним поршнем вначале, S — площадь основания поршней и дна цилиндра, р2 — давление под верхним поршнем после опускания верхнего поршня на место нижнего, рс — давление силы, придавившей поршень, V2 — новый объем воздуха под верхним поршнем, р3 — давление газа под нижним поршнем до опускания верхнего, р4 — давление газа под нижним поршнем после его сжатия, Т3 — объем воздуха под нижнем поршнем после сжатия.

Закон Бойля — Мариотта применительно к газу подверхним поршнем будет выглядеть так:

p1V1=p2V2.    (1)

Давление газа под верхним поршнем р1 при равновесии равно сумме атмосферного давления ратм и давления поршня рп:

р1 = ратм + рп

Но по условию задачи р1 = 2ратм, поэтому 2ратм = ратм + рп, откуда

рп = ратм.     (2)

Объем воздуха под верхним поршнем вначале был равен:

V1 = hS.     (3)

После опускания верхнего поршня на место нижнего газ под ними сжался и давление под верхним поршнем стало р2. Теперь оно равно сумме давлений атмосферы ратм, поршня рп и некоторой силы, придавившей поршень, рс:

р2атмпс

или с учетом (2)

р2 = 2ратм + рс.     (4)

Теперь нам предстоит решить систему уравнений (6) и (11) относительно искомого расстояния х, исключив из них неизвестные давления. Давайте в этих уравнениях сначала раскроем скобки и сделаем приведение подобных членов — может, мы их при этом немного упростим. Начнем с уравнения (6)

Ответ:  х = 0,55h.


Комментарии